Search results
Results from the WOW.Com Content Network
Data-flow analysis is a technique for gathering information about the possible set of values calculated at various points in a computer program.A program's control-flow graph (CFG) is used to determine those parts of a program to which a particular value assigned to a variable might propagate.
For example, let us multiply matrices A, B and C. Let us assume that their dimensions are m×n, n×p, and p×s, respectively. Matrix A×B×C will be of size m×s and can be calculated in two ways shown below: Ax(B×C) This order of matrix multiplication will require nps + mns scalar multiplications.
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
Since algorithms are platform-independent (i.e. a given algorithm can be implemented in an arbitrary programming language on an arbitrary computer running an arbitrary operating system), there are additional significant drawbacks to using an empirical approach to gauge the comparative performance of a given set of algorithms.
Introduction to Algorithms, Second Edition. MIT Press and McGraw–Hill, 2001. ISBN 0-262-03293-7. Sections 4.3 (The master method) and 4.4 (Proof of the master theorem), pp. 73–90. Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundation, Analysis, and Internet Examples. Wiley, 2002. ISBN 0-471-38365-1. The master theorem ...
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.
"b) the possibility of starting out with initial data, which may vary within given limits -- the generality of the algorithm; "c) the orientation of the algorithm toward obtaining some desired result, which is indeed obtained in the end with proper initial data -- the conclusiveness of the algorithm." (p.1)
It starts from an assumption about a probabilistic distribution of the set of all possible inputs. This assumption is then used to design an efficient algorithm or to derive the complexity of a known algorithm. This approach is not the same as that of probabilistic algorithms, but the two may be combined.