enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Top quark condensate - Wikipedia

    en.wikipedia.org/wiki/Top_quark_condensate

    The composite Higgs boson arises "naturally" in Topcolor models, that are extensions of the standard model using a hypothetical force analogous to quantum chromodynamics. To be "natural", that is, without excessive fine-tuning (i.e. to stabilize the Higgs mass from large radiative corrections), the hypothesis requires new physics at a ...

  3. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    q is any quark, g is a gluon, X is any charged particle, γ is a photon, f is any fermion, m is any particle with mass (with the possible exception of the neutrinos), m B is any boson with mass. In diagrams with multiple particle labels separated by / one particle label is chosen.

  4. Gluon - Wikipedia

    en.wikipedia.org/wiki/Gluon

    The gluon is a vector boson, which means it has a spin of 1. While massive spin-1 particles have three polarization states, massless gauge bosons like the gluon have only two polarization states because gauge invariance requires the field polarization to be transverse to the direction that the gluon is traveling.

  5. Standard Model - Wikipedia

    en.wikipedia.org/wiki/Standard_Model

    The Higgs boson plays a unique role in the Standard Model, by explaining why the other elementary particles, except the photon and gluon, are massive. In particular, the Higgs boson explains why the photon has no mass, while the W and Z bosons are very heavy.

  6. W and Z bosons - Wikipedia

    en.wikipedia.org/wiki/W_and_Z_bosons

    In May 2024, the Particle Data Group estimated the World Average mass for the W boson to be 80369.2 ± 13.3 MeV, based on experiments to date. [11] As of 2021, experimental measurements of the W boson mass had been similarly assessed to converge around 80 379 ± 12 MeV, [12] all consistent with one another and with the Standard Model.

  7. Boson - Wikipedia

    en.wikipedia.org/wiki/Boson

    The name boson was coined by Paul Dirac [3] [4] to commemorate the contribution of Satyendra Nath Bose, an Indian physicist. When Bose was a reader (later professor) at the University of Dhaka, Bengal (now in Bangladesh), [5] [6] he and Albert Einstein developed the theory characterising such particles, now known as Bose–Einstein statistics and Bose–Einstein condensate.

  8. Strong interaction - Wikipedia

    en.wikipedia.org/wiki/Strong_interaction

    The force carrier particle of the strong interaction is the gluon, a massless gauge boson. Gluons are thought to interact with quarks and other gluons by way of a type of charge called color charge. Color charge is analogous to electromagnetic charge, but it comes in three types (±red, ±green, and ±blue) rather than one, which results in ...

  9. Soft-collinear effective theory - Wikipedia

    en.wikipedia.org/wiki/Soft-collinear_effective...

    SCET is an effective theory for highly energetic quarks interacting with collinear and/or soft gluons. It has been used for calculations of the decays of B mesons (quark-antiquark bound states involving a bottom quark) and the properties of jets (sprays of hadrons that emerge from particle collisions when a quark or gluon is produced). SCET has ...