Search results
Results from the WOW.Com Content Network
For example, if the variance of a random variable is said to be finite, this implies it is a non-negative real number, possibly zero. In some contexts though, for example in "a small but finite amplitude", zero and infinitesimals are meant to be excluded.
For example: "All humans are mortal, and Socrates is a human. ∴ Socrates is mortal." ∵ Abbreviation of "because" or "since". Placed between two assertions, it means that the first one is implied by the second one. For example: "11 is prime ∵ it has no positive integer factors other than itself and one." ∋ 1. Abbreviation of "such that".
Sometimes used for “relation”, also used for denoting various ad hoc relations (for example, for denoting “witnessing” in the context of Rosser's trick). The fish hook is also used as strict implication by C.I.Lewis p {\displaystyle p} ⥽ q ≡ ( p → q ) {\displaystyle q\equiv \Box (p\rightarrow q)} .
In mathematics, a tuple is a finite sequence or ordered list of numbers or, more generally, mathematical objects, which are called the elements of the tuple. An n-tuple is a tuple of n elements, where n is a non-negative integer.
def – define or definition. deg – degree of a polynomial, or other recursively-defined objects such as well-formed formulas. (Also written as ∂.) del – del, a differential operator. (Also written as.) det – determinant of a matrix or linear transformation. DFT – discrete Fourier transform.
Still other definitions emphasize pattern, order, or structure. For example: Mathematics is the classification and study of all possible patterns. [14] Walter Warwick Sawyer, 1955. Yet another approach makes abstraction the defining criterion:
For example, the physicist Albert Einstein's formula = is the quantitative representation in mathematical notation of mass–energy equivalence. [ 1 ] Mathematical notation was first introduced by François Viète at the end of the 16th century and largely expanded during the 17th and 18th centuries by René Descartes , Isaac Newton , Gottfried ...
For example, the imaginary number is undefined within the set of real numbers. So it is meaningless to reason about the value, solely within the discourse of real numbers. However, defining the imaginary number i {\displaystyle i} to be equal to − 1 {\displaystyle {\sqrt {-1}}} , allows there to be a consistent set of mathematics referred to ...