Search results
Results from the WOW.Com Content Network
The library NumPy can be used for manipulating arrays, SciPy for scientific and mathematical analysis, Pandas for analyzing table data, Scikit-learn for various machine learning tasks, NLTK and spaCy for natural language processing, OpenCV for computer vision, and Matplotlib for data visualization. [3]
His machine learning course CS229 at Stanford is the most popular course offered on campus with over 1,000 students enrolling some years. [ 24 ] [ 25 ] As of 2020, three of most popular courses on Coursera are Ng's: Machine Learning (#1), AI for Everyone (#5), Neural Networks and Deep Learning (#6).
PyTorch is a machine learning library based on the Torch library, [4] [5] [6] used for applications such as computer vision and natural language processing, [7] originally developed by Meta AI and now part of the Linux Foundation umbrella.
There are two tracks I recommend for non-technical professionals to gain impact with AI: skill up or become an expert in the technology in your field.
She teaches the Stanford course CS231n on "Deep Learning for Computer Vision," [79] whose 2015 version was previously online at Coursera. [80] She has also taught CS131, an introductory class on computer vision.
PyTorch Lightning is an open-source Python library that provides a high-level interface for PyTorch, a popular deep learning framework. [1] It is a lightweight and high-performance framework that organizes PyTorch code to decouple research from engineering, thus making deep learning experiments easier to read and reproduce.
Open-source artificial intelligence is an AI system that is freely available to use, study, modify, and share. [1] These attributes extend to each of the system's components, including datasets, code, and model parameters, promoting a collaborative and transparent approach to AI development. [1]
A convolutional neural network layer, in the context of computer vision, can be considered a GNN applied to graphs whose nodes are pixels and only adjacent pixels are connected by edges in the graph. A transformer layer, in natural language processing , can be considered a GNN applied to complete graphs whose nodes are words or tokens in a ...