Search results
Results from the WOW.Com Content Network
Electronegativity is not a uniquely defined property and may depend on the definition. The suggested values are all taken from WebElements as a consistent set. Many of the highly radioactive elements have values that must be predictions or extrapolations, but are unfortunately not marked as such.
Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. [1] An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus. The higher the ...
Chlorine is a chemical element; it has symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is a yellow-green gas at room temperature.
See also: Electronegativities of the elements (data page) There are no reliable sources for Pm, Eu and Yb other than the range of 1.1–1.2; see Pauling, Linus (1960).
The solid form, like chlorine, has an orthorhombic crystalline structure and is soft and easily crushed. Bromine is an insulator in all of its forms. It has a high ionisation energy (1139.9 kJ/mol), high electron affinity (324 kJ/mol), and high electronegativity (2.96). Bromine is a strong oxidising agent (Br 2 + 2e → 2HBr = 1.07 V at pH 0 ...
The trifluoromethyl group has a significant electronegativity that is often described as being intermediate between the electronegativities of fluorine and chlorine. [1] For this reason, trifluoromethyl-substituted compounds are often strong acids, such as trifluoromethanesulfonic acid and trifluoroacetic acid.
A list of the electron affinities was used by Robert S. Mulliken to develop an electronegativity scale for atoms, equal to the average of the electrons affinity and ionization potential. [2] [3] Other theoretical concepts that use electron affinity include electronic chemical potential and chemical hardness.
These tables list values of molar ionization energies, measured in kJ⋅mol −1.This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions.