Search results
Results from the WOW.Com Content Network
In physics, and especially scattering theory, the momentum-transfer cross section (sometimes known as the momentum-transport cross section [1]) is an effective scattering cross section useful for describing the average momentum transferred from a particle when it collides with a target. Essentially, it contains all the information about a ...
In fluid dynamics, the mixing length model is a method attempting to describe momentum transfer by turbulence Reynolds stresses within a Newtonian fluid boundary layer by means of an eddy viscosity. The model was developed by Ludwig Prandtl in the early 20th century. [ 1 ]
The momentum transfer plays an important role in the evaluation of neutron, X-ray, and electron diffraction for the investigation of condensed matter. Laue-Bragg diffraction occurs on the atomic crystal lattice, conserves the wave energy and thus is called elastic scattering, where the wave numbers final and incident particles, and , respectively, are equal and just the direction changes by a ...
Momentum: the drag experienced by a rain drop as it falls in the atmosphere is an example of momentum diffusion (the rain drop loses momentum to the surrounding air through viscous stresses and decelerates). The molecular transfer equations of Newton's law for fluid momentum, Fourier's law for heat, and Fick's law for mass are
Material point method discrete format. Momentum mapping format is a key technique in the Material Point Method (MPM) for transferring physical quantities such as momentum, mass, and stress between a material point and a background grid. [1] The Material Point Method (MPM) is a numerical technique using a mixed Eulerian-Lagrangian description ...
In this diagram, two particles come in with momenta p 1 and p 2, they interact in some fashion, and then two particles with different momentum (p 3 and p 4) leave.. In theoretical physics, the Mandelstam variables are numerical quantities that encode the energy, momentum, and angles of particles in a scattering process in a Lorentz-invariant fashion.
These equations can be different in nature, e.g. elliptic, parabolic, or hyperbolic. The first well-documented use of this method was by Evans and Harlow (1957) at Los Alamos. The general equation for steady diffusion can easily be derived from the general transport equation for property Φ by deleting transient and convective terms. [1]
The differential cross section is extremely useful quantity in many fields of physics, as measuring it can reveal a great amount of information about the internal structure of the target particles. For example, the differential cross section of Rutherford scattering provided strong evidence for the existence of the atomic nucleus.