enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electrolysis of water - Wikipedia

    en.wikipedia.org/wiki/Electrolysis_of_water

    The electrolysis of water in standard conditions requires a theoretical minimum of 237 kJ of electrical energy input to dissociate each mole of water, which is the standard Gibbs free energy of formation of water. It also requires thermal energy to balance the change in entropy of the reaction.

  3. Water splitting - Wikipedia

    en.wikipedia.org/wiki/Water_splitting

    Atmospheric electricity utilization for the chemical reaction in which water is separated into oxygen and hydrogen. (Image via: Vion, US patent 28793. June 1860.) Electrolyser front with electrical panel in foreground. Electrolysis of water is the decomposition of water (H 2 O) into oxygen (O 2) and hydrogen (H 2): [2] Water electrolysis ship ...

  4. Electrolysis - Wikipedia

    en.wikipedia.org/wiki/Electrolysis

    Electrolysis of water produces hydrogen and oxygen in a ratio of 2 to 1 respectively. 2 H 2 O(l) → 2 H 2 (g) + O 2 (g) E° = +1.229 V. The energy efficiency of water electrolysis varies widely. The efficiency of an electrolyser is a measure of the enthalpy contained in the hydrogen (to undergo combustion with oxygen or some other later ...

  5. Solid oxide electrolyzer cell - Wikipedia

    en.wikipedia.org/wiki/Solid_oxide_electrolyzer_cell

    Electrolysis of water at 298 K (25 °C) requires 285.83 kJ of energy per mole in order to occur, [6] and the reaction is increasingly endothermic with increasing temperature. However, the energy demand may be reduced due to the Joule heating of an electrolysis cell, which may be utilized in the water splitting process at high temperatures.

  6. Photoelectrolysis of water - Wikipedia

    en.wikipedia.org/wiki/Photoelectrolysis_of_water

    The semiconductor crucial to this process, absorbs sunlight, initiating electron excitation and subsequent water molecule splitting into hydrogen and oxygen. Photoanode Reaction (Oxygen Evolution): H2O → 2H++1 2O2+ 2e−. Photocathode Reaction (Hydrogen Evolution): 2H++ 2e− → H2. 41598 2017 11971

  7. Electrolytic cell - Wikipedia

    en.wikipedia.org/wiki/Electrolytic_cell

    Important examples of electrolysis are the decomposition of water into hydrogen and oxygen, and bauxite into aluminum and other chemicals. Electroplating (e.g., of copper, silver, nickel, or chromium) is done using an electrolytic cell. Electrolysis is a technique that uses a direct electric current (DC).

  8. Electrochlorination - Wikipedia

    en.wikipedia.org/wiki/Electrochlorination

    A low voltage DC current is applied, electrolysis happens producing sodium hypochlorite and hydrogen gas (H 2). The solution travels to a tank that separates the hydrogen gas based on its low density. [1] Only water and sodium chloride are used. The simplified chemical reaction is: NaCl + H 2 O + energy → NaOCl + H 2 [citation needed]

  9. Unitized regenerative fuel cell - Wikipedia

    en.wikipedia.org/wiki/Unitized_regenerative_fuel...

    A unitized regenerative fuel cell (URFC) is a fuel cell based on the proton exchange membrane which can do the electrolysis of water in regenerative mode and function in the other mode as a fuel cell recombining oxygen and hydrogen gas to produce electricity. Both modes are done with the same fuel cell stack [1]