Search results
Results from the WOW.Com Content Network
It is the algebra of the set-theoretic operations of union, intersection and complementation, and the relations of equality and inclusion. For a basic introduction to sets see the article on sets, for a fuller account see naive set theory, and for a full rigorous axiomatic treatment see axiomatic set theory.
As set theory gained popularity as a foundation for modern mathematics, there has been support for the idea of introducing the basics of naive set theory early in mathematics education. In the US in the 1960s, the New Math experiment aimed to teach basic set theory, among other abstract concepts, to primary school students, but was met with ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Pages in category "Basic concepts in set theory" The following 55 pages are in this category, out of 55 total. This list may not reflect recent changes. A.
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. [3] Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language.
The following section contains an overview of the basic framework of rough set theory, as originally proposed by Zdzisław I. Pawlak, along with some of the key definitions. More formal properties and boundaries of rough sets can be found in Pawlak (1991) and cited references.
In set theory, a mathematical discipline, a fundamental sequence is a cofinal sequence of ordinals all below a given limit ordinal. Depending on author, fundamental sequences may be restricted to ω-sequences only [ 1 ] or permit fundamental sequences of length ω 1 {\displaystyle \mathrm {\omega } _{1}} . [ 2 ]
In set theory and related branches of mathematics, a family (or collection) can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection F {\displaystyle F} of subsets of a given set S {\displaystyle S} is called a family of subsets of S {\displaystyle S} , or a family of sets over S ...