Search results
Results from the WOW.Com Content Network
Bounded elastic wedge for equilibrium of forces and moments. To get around this problem, we consider a bounded region of the wedge and consider equilibrium of the bounded wedge. [ 3 ] [ 4 ] Let the bounded wedge have two traction free surfaces and a third surface in the form of an arc of a circle with radius a {\displaystyle a\,} .
The problem is also important because some more complicated problems in classical physics (such as the two-body problem with forces along the line connecting the two bodies) can be reduced to a central-force problem. Finally, the solution to the central-force problem often makes a good initial approximation of the true motion, as in calculating ...
In the classical central-force problem of classical mechanics, some potential energy functions () produce motions or orbits that can be expressed in terms of well-known functions, such as the trigonometric functions and elliptic functions. This article describes these functions and the corresponding solutions for the orbits.
The structure has no possible states of self-stress, i.e. internal forces in equilibrium with zero external loads are not possible. Statical indeterminacy, however, is the existence of a non-trivial (non-zero) solution to the homogeneous system of equilibrium equations. It indicates the possibility of self-stress (stress in the absence of an ...
Consequently, the object is in a state of static mechanical equilibrium. In classical mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. [1]: 39 By extension, a physical system made up of many parts is in mechanical equilibrium if the net force on each of its individual parts is zero. [1]: 45–46 [2]
[22] [23] [24] A dynamic problem of this type is the pendulum. Another example is a drum turned by the pull of gravity upon a falling weight attached to the rim by the inextensible cord. [ 25 ] An equilibrium problem (i.e. not kinematic) of this type is the catenary .
Solutions to the undamped forced problem have unbounded displacements when the driving frequency matches a natural frequency , i.e., the beam can resonate. The natural frequencies of a beam therefore correspond to the frequencies at which resonance can occur.
The conservation of mass is expressed locally by the fact that the flow of mass density satisfies the continuity equation: + =, where is the mass flux vector. The formulation of energy conservation is generally not in the form of a continuity equation because it includes contributions both from the macroscopic mechanical energy of the fluid flow and of the microscopic internal energy.