Search results
Results from the WOW.Com Content Network
The native scripting language of gretl is known as hansl (see below); it can also be used together with TRAMO/SEATS, R, Stata, Python, Octave, Ox and Julia. It includes natively all the basic statistical techniques employed in contemporary Econometrics and Time-Series Analysis.
Luchman, J.N.; CHAIDFOREST: Stata module to conduct random forest ensemble classification based on chi-square automated interaction detection (CHAID) as base learner, Available for free download, or type within Stata: ssc install chaidforest. IBM SPSS Decision Trees grows exhaustive CHAID trees as well as a few other types of trees such as CART.
OpenNN – A software library written in the programming language C++ which implements neural networks, a main area of deep learning research; Orange, a data mining, machine learning, and bioinformatics software; Pandas – High-performance computing (HPC) data structures and data analysis tools for Python in Python and Cython (statsmodels ...
Stan is a probabilistic programming language for statistical inference written in C++. [2] The Stan language is used to specify a (Bayesian) statistical model with an imperative program calculating the log probability density function. [2] Stan is licensed under the New BSD License.
The figures illustrate some of the results and regression types obtainable. A segmented regression analysis is based on the presence of a set of ( y, x) data, in which y is the dependent variable and x the independent variable.
If the increase in the MSPE out of sample compared to in sample is relatively slight, that results in the model being viewed favorably. And if two models are to be compared, the one with the lower MSPE over the n – q out-of-sample data points is viewed more favorably, regardless of the models’ relative in-sample performances. The out-of ...
The original model uses an iterative three-stage modeling approach: Model identification and model selection: making sure that the variables are stationary, identifying seasonality in the dependent series (seasonally differencing it if necessary), and using plots of the autocorrelation (ACF) and partial autocorrelation (PACF) functions of the dependent time series to decide which (if any ...
This type model can be estimated with Eviews, Stata, Python [8] or R [9] Statistical Packages. Recent research has shown that Bayesian vector autoregression is an appropriate tool for modelling large data sets. [10]