Search results
Results from the WOW.Com Content Network
Rarefaction is the reduction of an item's density, the opposite of compression. [1] Like compression, which can travel in waves ( sound waves , for instance), rarefaction waves also exist in nature. A common rarefaction wave is the area of low relative pressure following a shock wave (see picture).
In ecology, rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples.
The rarefaction is the farthest distance apart in the longitudinal wave and the compression is the closest distance together. The speed of the longitudinal wave is increased in higher index of refraction, due to the closer proximity of the atoms in the medium that is being compressed.
The false positive rate (FPR) is the proportion of all negatives that still yield positive test outcomes, i.e., the conditional probability of a positive test result given an event that was not present.
Anaximenes held that air could change into other forms through either rarefaction or condensation. Condensation would make the air denser, turning it into wind, clouds, water, earth, and finally stone. Rarefaction would make the air less dense as it eventually becomes fire.
They are associated with compression and rarefaction of both the fluid and the magnetic field, as well as with an effective tension that acts to straighten bent magnetic field lines. The properties of magnetosonic waves are highly dependent on the angle between the wavevector and the equilibrium magnetic field and on the relative importance of ...
Additionally, the cycle of compression and rarefaction exhibits hysteresis of pressure waves in most materials which is a function of frequency, so for every compression there is a rarefaction, and the total amount of energy dissipated due to hysteresis changes with frequency.
The Riemann problem is very useful for the understanding of equations like Euler conservation equations because all properties, such as shocks and rarefaction waves, appear as characteristics in the solution. It also gives an exact solution to some complex nonlinear equations, such as the Euler equations.