enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetosphere - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere

    The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...

  3. Earth's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Earth's_magnetic_field

    The function changes sign each â„“time it crosses one of these lines. Example of a quadrupole field. This can also be constructed by moving two dipoles together. The most common way of analyzing the global variations in the Earth's magnetic field is to fit the measurements to a set of spherical harmonics.

  4. Ecosphere (planetary) - Wikipedia

    en.wikipedia.org/wiki/Ecosphere_(planetary)

    Water is always on the move changing from a solid to vapor to ice and back to water. Water stays on the Earth for various amounts of time. It can be minutes, days or years and it doesn't have any set schedule. A drop of water can be in the ocean for years, or evaporate after a few days. Water is constantly changing and moving forms.

  5. Dynamo theory - Wikipedia

    en.wikipedia.org/wiki/Dynamo_theory

    The dynamo theory describes the process through which a rotating, convecting, and electrically conducting fluid can maintain a magnetic field over astronomical time scales. A dynamo is thought to be the source of the Earth's magnetic field and the magnetic fields of Mercury and the Jovian planets.

  6. Magnetosphere particle motion - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere_particle_motion

    A simulated charged particle, its trajectory determined primarily by the Earth's magnetosphere. The simplest magnetic field B is a constant one– straight parallel field lines and constant field intensity. In such a field, if an ion or electron enters perpendicular to the field lines, it can be shown to move in a circle (the field only needs ...

  7. Heliosphere - Wikipedia

    en.wikipedia.org/wiki/Heliosphere

    A "termination shock" analogy of water in a sink basin. The termination shock is the point in the heliosphere where the solar wind slows down to subsonic speed (relative to the Sun) because of interactions with the local interstellar medium. This causes compression, heating, and a change in the magnetic field.

  8. Magnetoreception - Wikipedia

    en.wikipedia.org/wiki/Magnetoreception

    The function of cryptochrome varies by species, but its mechanism is always the same: exposure to blue light excites an electron in a chromophore, which causes the formation of a radical-pair whose electrons are quantum entangled, enabling the precision needed for magnetoreception.

  9. Magnetic reconnection - Wikipedia

    en.wikipedia.org/wiki/Magnetic_reconnection

    Magnetic reconnection is a breakdown of "ideal-magnetohydrodynamics" and so of "Alfvén's theorem" (also called the "frozen-in flux theorem") which applies to large-scale regions of a highly-conducting magnetoplasma, for which the Magnetic Reynolds Number is very large: this makes the convective term in the induction equation dominate in such regions.