Search results
Results from the WOW.Com Content Network
The dual divergence to a Bregman divergence is the divergence generated by the convex conjugate F * of the Bregman generator of the original divergence. For example, for the squared Euclidean distance, the generator is x 2 {\displaystyle x^{2}} , while for the relative entropy the generator is the negative entropy x log x ...
The series can be compared to an integral to establish convergence or divergence. Let f ( n ) = a n {\displaystyle f(n)=a_{n}} be a positive and monotonically decreasing function . If
Convergence in distribution is the weakest form of convergence typically discussed, since it is implied by all other types of convergence mentioned in this article. However, convergence in distribution is very frequently used in practice; most often it arises from application of the central limit theorem .
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
Agnew's theorem describes rearrangements that preserve convergence for all convergent series. The Lévy–Steinitz theorem identifies the set of values to which a series of terms in R n can converge. A typical conditionally convergent integral is that on the non-negative real axis of (see Fresnel integral).
In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if
If the power series is expanded around the point a and the radius of convergence is r, then the set of all points z such that | z − a | = r is a circle called the boundary of the disk of convergence. A power series may diverge at every point on the boundary, or diverge on some points and converge at other points, or converge at all the points ...
Notably, these series provide examples of infinite sums that converge or diverge arbitrarily slowly. For instance, in the case of k = 2 {\displaystyle k=2} and α = 1 {\displaystyle \alpha =1} , the partial sum exceeds 10 only after 10 10 100 {\displaystyle 10^{10^{100}}} (a googolplex ) terms; yet the series diverges nevertheless.