Search results
Results from the WOW.Com Content Network
Heteroskedasticity-consistent standard errors that differ from classical standard errors may indicate model misspecification. Substituting heteroskedasticity-consistent standard errors does not resolve this misspecification, which may lead to bias in the coefficients. In most situations, the problem should be found and fixed. [5]
Heteroscedasticity often occurs when there is a large difference among the sizes of the observations. A classic example of heteroscedasticity is that of income versus expenditure on meals. A wealthy person may eat inexpensive food sometimes and expensive food at other times. A poor person will almost always eat inexpensive food.
Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics , a sequence of random variables is homoscedastic ( / ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k / ) if all its random variables have the same finite variance ; this is also known as homogeneity of variance.
A Newey–West estimator is used in statistics and econometrics to provide an estimate of the covariance matrix of the parameters of a regression-type model where the standard assumptions of regression analysis do not apply. [1] It was devised by Whitney K. Newey and Kenneth D. West in 1987, although there are a number of later variants.
Suppose that we estimate the regression model = + +, and obtain from this fitted model a set of values for ^, the residuals. Ordinary least squares constrains these so that their mean is 0 and so, given the assumption that their variance does not depend on the independent variables, an estimate of this variance can be obtained from the average of the squared values of the residuals.
The ZD-GARCH model does not require + =, and hence it nests the Exponentially weighted moving average (EWMA) model in "RiskMetrics". Since the drift term ω = 0 {\displaystyle ~\omega =0} , the ZD-GARCH model is always non-stationary, and its statistical inference methods are quite different from those for the classical GARCH model.
An irrelevant variable may be included in the model (although this does not create bias, it involves overfitting and so can lead to poor predictive performance). The dependent variable may be part of a system of simultaneous equations (giving simultaneity bias).
Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.