enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Extension of this pattern into other quadrants gives the reason why a negative number times a negative number yields a positive number. Note also how multiplication by zero causes a reduction in dimensionality, as does multiplication by a singular matrix where the determinant is 0. In this process, information is lost and cannot be regained.

  3. Negative number - Wikipedia

    en.wikipedia.org/wiki/Negative_number

    the product of a negative number—al-nāqiṣ (loss)—by a positive number—al-zāʾid (gain)—is negative, and by a negative number is positive. If we subtract a negative number from a higher negative number, the remainder is their negative difference. The difference remains positive if we subtract a negative number from a lower negative ...

  4. Talk:Negative number - Wikipedia

    en.wikipedia.org/wiki/Talk:Negative_number

    The resultant sign from multiplication when both are positive or one is positive and the other is negative can be illustrated so long as one uses the positive factor to give the cardinal value to the implied repeated addition or subtraction operation, or in other words, -5 x 2 = -5 + -5 = -10, or 10 ÷ -2 = 10 - 2 - 2 - 2 - 2 - 2 = 0 (the ...

  5. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    First multiply the quarters by 47, the result 94 is written into the first workspace. Next, multiply cwt 12*47 = (2 + 10)*47 but don't add up the partial results (94, 470) yet. Likewise multiply 23 by 47 yielding (141, 940). The quarters column is totaled and the result placed in the second workspace (a trivial move in this case).

  6. −1 - Wikipedia

    en.wikipedia.org/wiki/%E2%88%921

    In mathematics, −1 (negative one or minus one) is the additive inverse of 1, that is, the number that when added to 1 gives the additive identity element, 0. It is the negative integer greater than negative two (−2) and less than 0 .

  7. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  8. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    This formula distinguishes the complex number i from any real number, since the square of any (negative or positive) real number is always a non-negative real number. With this definition of multiplication and addition, familiar rules for the arithmetic of rational or real numbers continue to hold for complex numbers.

  9. Positive real numbers - Wikipedia

    en.wikipedia.org/wiki/Positive_real_numbers

    In the study of physical magnitudes, the order of decades provides positive and negative ordinals referring to an ordinal scale implicit in the ratio scale. In the study of classical groups , for every n ∈ N , {\displaystyle n\in \mathbb {N} ,} the determinant gives a map from n × n {\displaystyle n\times n} matrices over the reals to the ...