enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed. [2] [3]

  3. M/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/G/1_queue

    where as above is the Laplace–Stieltjes transform of the service time distribution function. This relationship can only be solved exactly in special cases (such as the M/M/1 queue ), but for any s {\textstyle s} the value of ϕ ( s ) {\textstyle \phi (s)} can be calculated and by iteration with upper and lower bounds the distribution function ...

  4. G/M/1 queue - Wikipedia

    en.wikipedia.org/wiki/G/M/1_queue

    It is an extension of an M/M/1 queue, where this renewal process must specifically be a Poisson process (so that interarrival times have exponential distribution). Models of this type can be solved by considering one of two M/G/1 queue dual systems, one proposed by Ramaswami and one by Bright.

  5. Rational arrival process - Wikipedia

    en.wikipedia.org/wiki/Rational_arrival_process

    In queueing theory, a discipline within the mathematical theory of probability, a rational arrival process (RAP) is a mathematical model for the time between job arrivals to a system. It extends the concept of a Markov arrival process , allowing for dependent matrix-exponential distributed inter-arrival times.

  6. G/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/G/G/1_queue

    The system is described in Kendall's notation where the G denotes a general distribution for both interarrival times and service times and the 1 that the model has a single server. [3] [4] Different interarrival and service times are considered to be independent, and sometimes the model is denoted GI/GI/1 to emphasise this.

  7. Kendall's notation - Wikipedia

    en.wikipedia.org/wiki/Kendall's_notation

    A M/M/1 queue means that the time between arrivals is Markovian (M), i.e. the inter-arrival time follows an exponential distribution of parameter λ. The second M means that the service time is Markovian: it follows an exponential distribution of parameter μ. The last parameter is the number of service channel which one (1).

  8. M/M/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/M/1_queue

    The average response time or sojourn time (total time a customer spends in the system) does not depend on scheduling discipline and can be computed using Little's law as 1/(μ − λ). The average time spent waiting is 1/(μ − λ) − 1/μ = ρ/(μ − λ). The distribution of response times experienced does depend on scheduling discipline.

  9. Lindley equation - Wikipedia

    en.wikipedia.org/wiki/Lindley_equation

    Lindley's integral equation is a relationship satisfied by the stationary waiting time distribution F(x) in a G/G/1 queue. = ()Where K(x) is the distribution function of the random variable denoting the difference between the (k - 1)th customer's arrival and the inter-arrival time between (k - 1)th and kth customers.