enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    For this purpose, the Gaussian gravitational constant was historically in widespread use, k = 0.017 202 098 95 radians per day, expressing the mean angular velocity of the Sun–Earth system. [citation needed] The use of this constant, and the implied definition of the astronomical unit discussed above, has been deprecated by the IAU since 2012.

  3. List of physical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_constants

    1.438 776 877... × 10 −2 m⋅K: 0 [12] ‍ [e] Wien wavelength displacement law constant: 2.897 771 955... × 10 −3 m⋅K: 0 [13] ′ ‍ [f] Wien frequency displacement law constant: 5.878 925 757... × 10 10 Hz⋅K −1: 0 [14] Wien entropy displacement law constant 3.002 916 077... × 10 −3 m⋅K: 0

  4. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    Gravity on the Earth's surface varies by around 0.7%, from 9.7639 m/s 2 on the Nevado Huascarán mountain in Peru to 9.8337 m/s 2 at the surface of the Arctic Ocean. [6] In large cities, it ranges from 9.7806 m/s 2 [7] in Kuala Lumpur, Mexico City, and Singapore to 9.825 m/s 2 in Oslo and Helsinki.

  5. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    To make this into an equal-sided formula or equation, there needed to be a multiplying factor or constant that would give the correct force of gravity no matter the value of the masses or distance between them (the gravitational constant). Newton would need an accurate measure of this constant to prove his inverse-square law.

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  7. Gravimetry - Wikipedia

    en.wikipedia.org/wiki/Gravimetry

    The "force constant" is just the coefficient of the displacement term in the equation of motion: m a + b v + k x + constant = F(X,t) m mass, a acceleration, b viscosity, v velocity, k force constant, x displacement F external force as a function of location/position and time. F is the force being measured, and ⁠ F / m ⁠ is the acceleration.

  8. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  9. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G(m 1 + m 2), or as GM when one body is much larger than the other: = (+).