Search results
Results from the WOW.Com Content Network
The number e is the unique base such that y = e x intersects only at x = 0. We may infer that e lies between 2 and 4. The number e is the unique real number such that (+) < < (+) + for all positive x. [31] Also, we have the inequality + for all real x, with equality if and only if x = 0. Furthermore, e is the unique base of the exponential for ...
The number e (e = 2.71828...), also known as Euler's number, which occurs widely in mathematical analysis The number i , the imaginary unit such that i 2 = − 1 {\displaystyle i^{2}=-1} The equation is often given in the form of an expression set equal to zero, which is common practice in several areas of mathematics.
In mathematics, the exponential of pi e π, [1] also called Gelfond's constant, [2] is the real number e raised to the power π. Its decimal expansion is given by: e π = 23.140 692 632 779 269 005 72... (sequence A039661 in the OEIS) Like both e and π, this constant is both irrational and transcendental. This follows from the Gelfond ...
For instance, e x can be defined as (+). Or e x can be defined as f x (1), where f x : R → B is the solution to the differential equation df x / dt (t) = x f x (t), with initial condition f x (0) = 1; it follows that f x (t) = e tx for every t in R.
Substituting r(cos θ + i sin θ) for e ix and equating real and imaginary parts in this formula gives dr / dx = 0 and dθ / dx = 1. Thus, r is a constant, and θ is x + C for some constant C. The initial values r(0) = 1 and θ(0) = 0 come from e 0i = 1, giving r = 1 and θ = x.
Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction. Using calculus, e may also be represented as an infinite series, infinite product, or other types of limit of a sequence.
Graphs of y = b x for various bases b: base 10, base e, base 2, base 1 / 2 . Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.
We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I; exp(X T) = (exp X) T, where X T denotes the transpose of X. exp(X ∗) = (exp X) ∗, where X ∗ denotes the conjugate transpose of X. If Y is invertible then e YXY −1 = Ye X Y −1. The next key result is this one: