enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.

  3. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The equation for universal gravitation thus takes the form: =, where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant.

  4. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    The speed of light in a locale is always equal to c according to the observer who is there. That is, every infinitesimal region of spacetime may be assigned its own proper time, and the speed of light according to the proper time at that region is always c. This is the case whether or not a given region is occupied by an observer.

  5. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    In uncurved space-time, far from a source of gravity, these geodesics correspond to straight lines; however, they may deviate from straight lines when the space-time is curved. The equation for the geodesic lines is [10] + = where Γ represents the Christoffel symbol and the variable q parametrizes the particle's path through space-time, its so ...

  6. Torricelli's equation - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_equation

    In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where

  7. Range of a projectile - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_projectile

    We are interested in the time when the projectile returns to the same height it originated. Let t g be any time when the height of the projectile is equal to its initial value. 0 = v t sin ⁡ θ − 1 2 g t 2 {\displaystyle 0=vt\sin \theta -{\frac {1}{2}}gt^{2}}

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 ‍ [4])