Search results
Results from the WOW.Com Content Network
The choice is made by considering a particular time-dependent problem of the forced oscillations due to the action of a periodic force. The principle was introduced by Andrey Nikolayevich Tikhonov and Alexander Andreevich Samarskii. [1] It is closely related to the limiting absorption principle (1905) and the Sommerfeld radiation condition (1912).
The principle behind the condition is that, for example, if a wave is moving across a discrete spatial grid and we want to compute its amplitude at discrete time steps of equal duration, [2] then this duration must be less than the time for the wave to travel to adjacent grid points. As a corollary, when the grid point separation is reduced ...
Position of a point in space, not necessarily a point on the wave profile or any line of propagation d, r: m [L] Wave profile displacement Along propagation direction, distance travelled (path length) by one wave from the source point r 0 to any point in space d (for longitudinal or transverse waves) L, d, r
For an incident wave traveling from one medium (where the wave speed is c 1) to another medium (where the wave speed is c 2), one part of the wave will transmit into the second medium, while another part reflects back into the other direction and stays in the first medium. The amplitude of the transmitted wave and the reflected wave can be ...
It was introduced by Arnold Sommerfeld in 1912 [1] and is closely related to the limiting absorption principle (1905) and the limiting amplitude principle (1948). The boundary condition established by the principle essentially chooses a solution of some wave equations which only radiates outwards from known sources.
Generally, a wave is reflected back along the line in the opposite direction. When the reflected wave reaches the source, it is reflected yet again, adding to the transmitted wave and changing the ratio of the voltage and current at the input, causing the voltage-current ratio to no longer equal the characteristic impedance.
Accordingly, let us modify the example by supposing that the wavefront which becomes surface W at time t, and which becomes surface W′ at the later time t + Δt, is emitted from point A at time 0. Let P be a point on W (as before), and B a point on W′. And let A, W, W′, and B be given, so that the problem is to find P.
It makes it look like the current has inertia – i.e. with a large inductance, it is difficult to increase or decrease the current flow at any given point. Large inductance L makes the wave move more slowly, just as waves travel more slowly down a heavy rope than a light string.