Search results
Results from the WOW.Com Content Network
In astrophysics, gravitational compression is a phenomenon in which gravity, acting on the mass of an object, compresses it, reducing its size and increasing the object's density. In the core of a star such as the Sun, gravitational pressure is balanced by the outward thermal pressure from fusion reactions, temporarily halting gravitational ...
Before Newton's law of gravity, there were many theories explaining gravity. Philoshophers made observations about things falling down − and developed theories why they do – as early as Aristotle who thought that rocks fall to the ground because seeking the ground was an essential part of their nature.
The equivalence between gravitational and inertial effects does not constitute a complete theory of gravity. When it comes to explaining gravity near our own location on the Earth's surface, noting that our reference frame is not in free fall, so that fictitious forces are to be expected, provides a suitable explanation. But a freely falling ...
Albert Einstein predicted in 1936 that rays of light from the same direction that skirt the edges of the Sun would converge to a focal point approximately 542 AU from the Sun. [37] Thus, a probe positioned at this distance (or greater) from the Sun could use the Sun as a gravitational lens for magnifying distant objects on the opposite side of ...
Putting the Sun immobile at the origin, when the Earth is moving in an orbit of radius R with velocity v presuming that the gravitational influence moves with velocity c, moves the Sun's true position ahead of its optical position, by an amount equal to vR/c, which is the travel time of gravity from the sun to the Earth times the relative ...
Newton proposed that the orbits of planets about the Sun are largely elliptical because the Sun's gravitation is dominant; to first approximation, the presence of the other planets can be ignored. By analogy, the elliptical orbit of the Moon about the Earth was dominated by the Earth's gravity; to first approximation, the Sun's gravity and ...
According to Newton's law of gravity, and independently verified by experiments such as that of Eötvös and its successors (see Eötvös experiment), there is a universality of free fall (also known as the weak equivalence principle, or the universal equality of inertial and passive-gravitational mass): the trajectory of a test body in free ...
Because the definition of r SOI relies on the presence of the Sun and a planet, the term is only applicable in a three-body or greater system and requires the mass of the primary body to be much greater than the mass of the secondary body. This changes the three-body problem into a restricted two-body problem.