Ads
related to: interlinking like venn diagram circles practice problems worksheet
Search results
Results from the WOW.Com Content Network
The commonly-used diagram for the Borromean rings consists of three equal circles centered at the points of an equilateral triangle, close enough together that their interiors have a common intersection (such as in a Venn diagram or the three circles used to define the Reuleaux triangle).
The center lens of the 2-circle figure is called a vesica piscis, from Euclid. Two circles are also called Villarceau circles as a plane intersection of a torus. The areas inside one circle and outside the other circle is called a lune. The 3-circle figure resembles a depiction of Borromean rings and is used in 3-set theory Venn diagrams.
Venn diagrams are a more restrictive form of Euler diagrams. A Venn diagram must contain all 2 n logically possible zones of overlap between its n curves, representing all combinations of inclusion/exclusion of its constituent sets. Regions not part of the set are indicated by coloring them black, in contrast to Euler diagrams, where membership ...
A Venn diagram, also called a set diagram or logic diagram, shows all possible logical relations between a finite collection of different sets. These diagrams depict elements as points in the plane, and sets as regions inside closed curves. A Venn diagram consists of multiple overlapping closed curves, usually circles, each representing a set.
Euler circle may refer to: Nine-point circle, a circle that can be constructed for any given triangle; Euler diagram, a diagrammatic means of representing propositions and their relationships; Venn diagram, a diagram type originally also called Euler circle
The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.
The related circle packing problem deals with packing circles, possibly of different sizes, on a surface, for instance the plane or a sphere. The counterparts of a circle in other dimensions can never be packed with complete efficiency in dimensions larger than one (in a one-dimensional universe, the circle analogue is just two points). That is ...
This diagram uses embedded text that can be easily translated using a text editor. Valued image This image has been assessed under the valued image criteria and is considered the most valued image on Commons within the scope: P versus NP problem .
Ads
related to: interlinking like venn diagram circles practice problems worksheet