enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Leibniz formula for π - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for_π

    3.14159 26535 89793 23846 ... where N is an integer divisible by 4. If N is chosen to be a power of ten, each term in the right sum becomes a finite decimal fraction.

  3. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    Fractions such as ⁠ 22 / 7 ⁠ and ⁠ 355 / 113 ⁠ are commonly used to approximate π, but no common fraction (ratio of whole numbers) can be its exact value. [21] Because π is irrational, it has an infinite number of digits in its decimal representation , and does not settle into an infinitely repeating pattern of digits.

  4. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or ⁠ ⁠, where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include ⁠ 1 2 ⁠, − ⁠ 8 5 ⁠, ⁠ −8 5 ⁠, and ⁠ 8 −5 ⁠.

  5. Particular values of the gamma function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    It is unknown whether these constants are transcendental in general, but Γ(⁠ 1 / 3 ⁠) and Γ(⁠ 1 / 4 ⁠) were shown to be transcendental by G. V. Chudnovsky. Γ(⁠ 1 / 4 ⁠) / 4 √ π has also long been known to be transcendental, and Yuri Nesterenko proved in 1996 that Γ(⁠ 1 / 4 ⁠), π, and e π are algebraically independent.

  6. Dyadic rational - Wikipedia

    en.wikipedia.org/wiki/Dyadic_rational

    Dyadic rational. In mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in computer science because they are the only ones with finite binary representations.

  7. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself. In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power.

  8. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    For example, in duodecimal, ⁠ 1 / 2 ⁠ = 0.6, ⁠ 1 / 3 ⁠ = 0.4, ⁠ 1 / 4 ⁠ = 0.3 and ⁠ 1 / 6 ⁠ = 0.2 all terminate; ⁠ 1 / 5 ⁠ = 0. 2497 repeats with period length 4, in contrast with the equivalent decimal expansion of 0.2; ⁠ 1 / 7 ⁠ = 0. 186A35 has period 6 in duodecimal, just as it does in decimal. If b is an integer base ...

  9. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    List of representations of. e. The mathematical constant e can be represented in a variety of ways as a real number. Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction.