enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    Greatest common divisor. In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted . For example, the GCD of 8 and 12 is ...

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The number of steps to calculate the GCD of two natural numbers, a and b, may be denoted by T(a, b). [95] If g is the GCD of a and b, then a = mg and b = ng for two coprime numbers m and n. Then T(a, b) = T(m, n) as may be seen by dividing all the steps in the Euclidean algorithm by g. [96]

  4. Coin problem - Wikipedia

    en.wikipedia.org/wiki/Coin_problem

    For example, if you had two types of coins valued at 6 cents and 14 cents, the GCD would equal 2, and there would be no way to combine any number of such coins to produce a sum which was an odd number; additionally, even numbers 2, 4, 8, 10, 16 and 22 (less than m=24) could not be formed, either.

  5. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    Polynomial greatest common divisor. In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate ...

  6. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    Bézout's identity. Relating two numbers and their greatest common divisor. In mathematics, Bézout's identity (also called Bézout's lemma), named after Étienne Bézout who proved it for polynomials, is the following theorem: Bézout's identity — Let a and b be integers with greatest common divisor d. Then there exist integers x and y such ...

  7. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Thus, the GCD is 2 2 × 3 = 12. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1][2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers. Stein's algorithm uses simpler arithmetic operations than the conventional Euclidean algorithm; it replaces division with ...

  8. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers a and b, also the coefficients of Bézout's identity, which are integers x and y such that. This is a certifying algorithm, because the gcd is the only ...

  9. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd (n, k ...