enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proof that π is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_π_is_irrational

    t. e. In the 1760s, Johann Heinrich Lambert was the first to prove that the number π is irrational, meaning it cannot be expressed as a fraction , where and are both integers. In the 19th century, Charles Hermite found a proof that requires no prerequisite knowledge beyond basic calculus.

  3. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    t. e. The number π (/ paɪ /; spelled out as " pi ") is a mathematical constant that is the ratio of a circle 's circumference to its diameter, approximately equal to 3.14159. The number π appears in many formulae across mathematics and physics.

  4. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    Of some notability are legal or historical texts purportedly "defining π" to have some rational value, such as the "Indiana Pi Bill" of 1897, which stated "the ratio of the diameter and circumference is as five-fourths to four" (which would imply "π = 3.2") and a passage in the Hebrew Bible that implies that π = 3.

  5. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer (or, equivalently, rational) coefficients. The best-known transcendental numbers are π and e. [1][2] The quality of a number being transcendental is called transcendence.

  6. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    In mathematics, Euler's identity[note 1] (also known as Euler's equation) is the equality where. is pi, the ratio of the circumference of a circle to its diameter. Euler's identity is named after the Swiss mathematician Leonhard Euler. It is a special case of Euler's formula when evaluated for .

  7. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    mathematical constant π. 3.14159 26535 89793 23846 26433... The following is a list of significant formulae involving the mathematical constant π. Many of these formulae can be found in the article Pi, or the article Approximations of π.

  8. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Irrational number. The number √ 2 is irrational. In mathematics, the irrational numbers (in- + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also ...

  9. Proof that 22/7 exceeds π - Wikipedia

    en.wikipedia.org/wiki/Proof_that_22/7_exceeds_π

    Proofs of the mathematical result that the rational number ⁠ 22 / 7 ⁠ is greater than π (pi) date back to antiquity. One of these proofs, more recently developed but requiring only elementary techniques from calculus, has attracted attention in modern mathematics due to its mathematical elegance and its connections to the theory of Diophantine approximations.