enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    Square root. Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 52 (5 squared). In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1] For example, 4 and −4 are square roots of 16 ...

  3. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Quadratic equation. In mathematics, a quadratic equation (from Latin quadratus ' square ') is an equation that can be rearranged in standard form as [1] where x represents an unknown value, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.)

  4. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  5. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    Quadratic formula. The roots of the quadratic function y = ⁠ 1 2 ⁠x2 − 3x + ⁠ 5 2 ⁠ are the places where the graph intersects the x -axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.

  6. Fundamental theorem of algebra - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

    Fundamental theorem of algebra. The fundamental theorem of algebra, also called d'Alembert's theorem[1] or the d'Alembert–Gauss theorem, [2] states that every non- constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex ...

  7. Quadratic integer - Wikipedia

    en.wikipedia.org/wiki/Quadratic_integer

    Common examples of quadratic integers are the square roots of rational integers, such as √ 2, and the complex number i = √ −1, which generates the Gaussian integers. Another common example is the non-real cubic root of unity ⁠ −1 + √ −3 / 2 ⁠, which generates the Eisenstein integers.

  8. Integer square root - Wikipedia

    en.wikipedia.org/wiki/Integer_square_root

    In number theory, the integer square root (isqrt) of a non-negative integer n is the non-negative integer m which is the greatest integer less than or equal to the square root of n, ⁡ = ⌊ ⌋. For example, isqrt ⁡ ( 27 ) = ⌊ 27 ⌋ = ⌊ 5.19615242270663... ⌋ = 5. {\displaystyle \operatorname {isqrt} (27)=\lfloor {\sqrt {27}}\rfloor ...

  9. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).