enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    A way to improve on the Poisson bootstrap, termed "sequential bootstrap", is by taking the first samples so that the proportion of unique values is ≈0.632 of the original sample size n. This provides a distribution with main empirical characteristics being within a distance of O ( n 3 / 4 ) {\displaystyle O(n^{3/4})} . [ 36 ]

  3. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    If n′=n, then for large n the set is expected to have the fraction (1 - 1/e) (≈63.2%) of the unique examples of D, the rest being duplicates. [1] This kind of sample is known as a bootstrap sample. Sampling with replacement ensures each bootstrap is independent from its peers, as it does not depend on previous chosen samples when sampling.

  4. Bootstrap (front-end framework) - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_(front-end...

    Bootstrap (formerly Twitter Bootstrap) is a free and open-source CSS framework directed at responsive, mobile-first front-end web development. It contains HTML, CSS and (optionally) JavaScript -based design templates for typography, forms, buttons, navigation, and other interface components. As of May 2023, Bootstrap is the 17th most starred ...

  5. Jackknife resampling - Wikipedia

    en.wikipedia.org/wiki/Jackknife_resampling

    Jackknife resampling. In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling. It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap. Given a sample of size , a jackknife estimator can be built ...

  6. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    One set, the bootstrap sample, is the data chosen to be "in-the-bag" by sampling with replacement. The out-of-bag set is all data not chosen in the sampling process. When this process is repeated, such as when building a random forest, many bootstrap samples and OOB sets are created. The OOB sets can be aggregated into one dataset, but each ...

  7. Resampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Resampling_(statistics)

    The best example of the plug-in principle, the bootstrapping method. Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio ...

  8. Bootstrapping - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping

    In computer technology, the term bootstrapping refers to language compilers that are able to be coded in the same language. (For example, a C compiler is now written in the C language. Once the basic compiler is written, improvements can be iteratively made, thus pulling the language up by its bootstraps).

  9. Bootstrap error-adjusted single-sample technique - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_error-adjusted...

    Bootstrap error-adjusted single-sample technique. In statistics, the bootstrap error-adjusted single-sample technique (BEST or the BEAST) is a non-parametric method that is intended to allow an assessment to be made of the validity of a single sample. It is based on estimating a probability distribution representing what can be expected from ...