Search results
Results from the WOW.Com Content Network
In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element ...
Hertzsprung–Russell diagram. An observational Hertzsprung–Russell diagram with 22,000 stars plotted from the Hipparcos Catalogue and 1,000 from the Gliese Catalogue of nearby stars. Stars tend to fall only into certain regions of the diagram. The most prominent is the diagonal, going from the upper-left (hot and bright) to the lower-right ...
The path which the star follows across the HR diagram is called an evolutionary track. [57] H–R diagram for two open clusters: NGC 188 (blue) is older and shows a lower turn off from the main sequence than M67 (yellow). The dots outside the two sequences are mostly foreground and background stars with no relation to the clusters.
The supergiants lie more or less on a horizontal band occupying the entire upper portion of the HR diagram, but there are some variations at different spectral types. These variations are due partly to different methods for assigning luminosity classes at different spectral types, and partly to actual physical differences in the stars.
Blue giant. In astronomy, a blue giant is a hot star with a luminosity class of III (giant) or II (bright giant). In the standard Hertzsprung–Russell diagram, these stars lie above and to the right of the main sequence. The term applies to a variety of stars in different phases of development, all evolved stars that have moved from the main ...
Supergiants. Red supergiant. Hypergiants. absolute. magni-. tude. (MV) A subgiant is a star that is brighter than a normal main-sequence star of the same spectral class, but not as bright as giant stars. The term subgiant is applied both to a particular spectral luminosity class and to a stage in the evolution of a star.
Giant star. A giant star has a substantially larger radius and luminosity than a main-sequence (or dwarf) star of the same surface temperature. [1] They lie above the main sequence (luminosity class V in the Yerkes spectral classification) on the Hertzsprung–Russell diagram and correspond to luminosity classes II and III. [2]
Horizontal branch. The horizontal branch (HB) is a stage of stellar evolution that immediately follows the red-giant branch in stars whose masses are similar to the Sun 's. Horizontal-branch stars are powered by helium fusion in the core (via the triple-alpha process) and by hydrogen fusion (via the CNO cycle) in a shell surrounding the core.