Search results
Results from the WOW.Com Content Network
Intersection curve between polyhedrons: three houses Intersection of polyhedrons: two tori. The intersection curve of two polyhedrons is a polygon (see intersection of three houses). The display of a parametrically defined surface is usually done by mapping a rectangular net into 3-space. The spatial quadrangles are nearly flat.
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).
The surface-to-surface intersection (SSI) problem is a basic workflow in computer-aided geometric design: Given two intersecting surfaces in R 3, compute all parts of the intersection curve. If two surfaces intersect, the result will be a set of isolated points, a set of curves, a set of overlapping surfaces, or any combination of these cases. [1]
A Steinmetz curve is the curve of intersection of two right circular cylinders of radii and , whose axes intersect perpendicularly. In case of a = b {\displaystyle a=b} the Steimetz curves are the edges of a Steinmetz solid .
Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.
In three dimensions, a single equation usually gives a surface, and a curve must be specified as the intersection of two surfaces (see below), or as a system of parametric equations. [18] The equation x 2 + y 2 = r 2 is the equation for any circle centered at the origin (0, 0) with a radius of r.
This is why a line piercing a cylinder's volume is considered to have two points of intersection: the surface point where it enters and the one where it leaves. See § end caps . A key intuition of this sort of intersection problem is to represent each shape as an equation which is true for all points on the shape.
Transverse curves on the surface of a sphere Non-transverse curves on the surface of a sphere. Two submanifolds of a given finite-dimensional smooth manifold are said to intersect transversally if at every point of intersection, their separate tangent spaces at that point together generate the tangent space of the ambient manifold at that point. [1]