Search results
Results from the WOW.Com Content Network
One possibility to determine a polygon of points of the intersection curve of two surfaces is the marching method (see section References). It consists of two essential parts: The first part is the curve point algorithm, which determines to a starting point in the vicinity of the two surfaces a point on the intersection curve. The algorithm ...
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types ...
The surface-to-surface intersection (SSI) problem is a basic workflow in computer-aided geometric design: Given two intersecting surfaces in R 3, compute all parts of the intersection curve. If two surfaces intersect, the result will be a set of isolated points, a set of curves, a set of overlapping surfaces, or any combination of these cases. [1]
Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.
Dupin's theorem is a tool for determining the curvature lines of a surface by intersection with suitable surfaces (see examples), without time-consuming calculation of derivatives and principal curvatures. The next example shows, that the embedding of a surface into a threefold orthogonal system is not unique.
Transverse curves on the surface of a sphere Non-transverse curves on the surface of a sphere. Two submanifolds of a given finite-dimensional smooth manifold are said to intersect transversally if at every point of intersection, their separate tangent spaces at that point together generate the tangent space of the ambient manifold at that point. [1]
a = 1, b = 2, c = 0, 0.8, 1. Start with the usual equation for the torus: (+ + +) = (+).Interchanging y and z so that the axis of revolution is now on the xy-plane, and setting z=c to find the curve of intersection gives
The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...