Search results
Results from the WOW.Com Content Network
In geometry, an intersection curve is a curve that is common to two geometric objects. In the simplest case, the intersection of two non-parallel planes in Euclidean 3-space is a line . In general, an intersection curve consists of the common points of two transversally intersecting surfaces , meaning that at any common point the surface ...
The intersection points are: (−0.8587, 0.7374, −0.6332), (0.8587, 0.7374, 0.6332). A line–sphere intersection is a simple special case. Like the case of a line and a plane, the intersection of a curve and a surface in general position consists of discrete points, but a curve may be partly or totally contained in a surface.
The witch of Agnesi (curve MP) with labeled points An animation showing the construction of the witch of Agnesi. To construct this curve, start with any two points O and M, and draw a circle with OM as diameter. For any other point A on the circle, let N be the point of intersection of the secant line OA and the tangent line at M.
Viviani's curve as intersection of a sphere and a cylinder. In the case = +, the cylinder and sphere are tangential to each other at point (,,). The intersection resembles a figure eight: it is a closed curve which intersects itself. The above parametrization becomes
These definitions E 1, E 2, and E 3 of the envelope may be different sets. Consider for instance the curve y = x 3 parametrised by γ : R → R 2 where γ(t) = (t,t 3). The one-parameter family of curves will be given by the tangent lines to γ. First we calculate the discriminant . The generating function is
The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...
Implicit representations facilitate the computation of intersection points: If one curve is represented implicitly and the other parametrically the computation of intersection points needs only a simple (1-dimensional) Newton iteration, which is contrary to the cases implicit-implicit and parametric-parametric (see Intersection).
Similarly, [3] if C is a smooth curve on the quadric surface P 1 ×P 1 with bidegree (d 1,d 2) (meaning d 1,d 2 are its intersection degrees with a fiber of each projection to P 1), since the canonical class of P 1 ×P 1 has bidegree (−2,−2), the adjunction formula shows that the canonical class of C is the intersection product of divisors ...