enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Geometry. In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses. The idealized ruler, known as a straightedge, is assumed ...

  3. Mathematics of paper folding - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_paper_folding

    In 1949, R C Yeates' book "Geometric Methods" described three allowed constructions corresponding to the first, second, and fifth of the Huzita–Hatori axioms. [6] [7] The Yoshizawa–Randlett system of instruction by diagram was introduced in 1961. [8] Crease pattern for a Miura fold. The parallelograms of this example have 84° and 96° angles.

  4. List of interactive geometry software - Wikipedia

    en.wikipedia.org/wiki/List_of_interactive...

    Interactive geometry software (IGS) or dynamic geometry environments (DGEs) are computer programs which allow one to create and then manipulate geometric constructions, primarily in plane geometry. In most IGS, one starts construction by putting a few points and using them to define new objects such as lines, circles or other points.

  5. Poncelet–Steiner theorem - Wikipedia

    en.wikipedia.org/wiki/Poncelet–Steiner_theorem

    To draw the parallel (h) to a diameter g through any given point P. Chose auxiliary point C anywhere on the straight line through B and P outside of BP. (Steiner) In the branch of mathematics known as Euclidean geometry, the Poncelet–Steiner theorem is one of several results concerning compass and straightedge constructions having additional restrictions imposed on the traditional rules.

  6. Constructive proof - Wikipedia

    en.wikipedia.org/wiki/Constructive_proof

    Constructive proof. In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existence proof or pure existence theorem), which proves the existence of a particular ...

  7. Archimedean spiral - Wikipedia

    en.wikipedia.org/wiki/Archimedean_spiral

    Archimedean spiral. Three 360° loops of one arm of an Archimedean spiral. The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. The term Archimedean spiral is sometimes used to refer to the more general class of spirals of this type (see below ...

  8. Wiles's proof of Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Wiles's_proof_of_Fermat's...

    Sir Andrew John Wiles. Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Sir Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's Last Theorem and the modularity theorem were believed to be impossible to ...

  9. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...