Ad
related to: complete perfect square calculator
Search results
Results from the WOW.Com Content Network
Animation depicting the process of completing the square. (Details, animated GIF version) In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form to the form for some values of and . [1] In terms of a new quantity , this expression is a quadratic ...
Square number. Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 32 and can be written as 3 × 3.
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
Perfect number. In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.
Quadratic equation. In mathematics, a quadratic equation (from Latin quadratus ' square ') is an equation that can be rearranged in standard form as [1] where x represents an unknown value, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.)
Interior angle Δθ = θ 1 −θ 2. The Pythagorean theorem is a special case of the more general theorem relating the lengths of sides in any triangle, the law of cosines, which states that where is the angle between sides and . [45] When is radians or 90°, then , and the formula reduces to the usual Pythagorean theorem.
Squaring the square is the problem of tiling an integral square using only other integral squares. (An integral square is a square whose sides have integer length.) The name was coined in a humorous analogy with squaring the circle. Squaring the square is an easy task unless additional conditions are set. The most studied restriction is that ...
We can calculate s = tan B/2 = tan (π/4 − A/2) = (1 − r) / (1 + r) from the formula for the tangent of the difference of angles. Use of s instead of r in the above formulas will give the same primitive Pythagorean triple but with a and b swapped.
Ad
related to: complete perfect square calculator