Ad
related to: quadratic function calculator with pointswalmart.com has been visited by 1M+ users in the past month
Search results
Results from the WOW.Com Content Network
Quadratic equation. In mathematics, a quadratic equation (from Latin quadratus ' square ') is an equation that can be rearranged in standard form as [1] where x represents an unknown value, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.)
Quadratic formula. The roots of the quadratic function y = 1 2 x2 − 3x + 5 2 are the places where the graph intersects the x -axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
Quadratic function. In mathematics, a quadratic function of a single variable is a function of the form [1] where is its variable, and , , and are coefficients. The expression , especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two.
Animation depicting the process of completing the square. (Details, animated GIF version) In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form to the form for some values of and . [1] In terms of a new quantity , this expression is a quadratic ...
In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, is a quadratic form in the variables x and y. The coefficients usually belong to a fixed field K, such as the real or complex numbers, and one speaks of a quadratic form over K.
A Bézier curve is defined by a set of control points P0 through Pn, where n is called the order of the curve (n = 1 for linear, 2 for quadratic, 3 for cubic, etc.). The first and last control points are always the endpoints of the curve; however, the intermediate control points generally do not lie on the curve.
Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.
Therefore, the point F, defined above, is the focus of the parabola. This discussion started from the definition of a parabola as a conic section, but it has now led to a description as a graph of a quadratic function. This shows that these two descriptions are equivalent. They both define curves of exactly the same shape.
Ad
related to: quadratic function calculator with pointswalmart.com has been visited by 1M+ users in the past month