enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Graphs of y = b x for various bases b: base 10, base e, base 2, base ⁠ 1 / 2 ⁠. Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.

  3. Binomial approximation - Wikipedia

    en.wikipedia.org/wiki/Binomial_approximation

    The binomial approximation is useful for approximately calculating powers of sums of 1 and a small number x. It states that. It is valid when and where and may be real or complex numbers. The benefit of this approximation is that is converted from an exponent to a multiplicative factor. This can greatly simplify mathematical expressions (as in ...

  4. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    Power of two. A power of two is a number of the form 2n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent. Powers of two with non-negative exponents are integers: 20 = 1, 21 = 2, and 2n is two multiplied by itself n times. [1][2] The first ten powers of 2 for non-negative ...

  5. One half - Wikipedia

    en.wikipedia.org/wiki/One_half

    One half is a rational number that lies midway between nil and unity (which are the elementary additive and multiplicative identities) as the quotient of the first two non-zero integers, . It has two different decimal representations in base ten, the familiar and the recurring , with a similar pair of expansions in any even base; while in odd ...

  6. Wheat and chessboard problem - Wikipedia

    en.wikipedia.org/wiki/Wheat_and_chessboard_problem

    When expressed as exponents, the geometric series is: 2 0 + 2 1 + 2 2 + 2 3 + ... and so forth, up to 2 63. The base of each exponentiation, "2", expresses the doubling at each square, while the exponents represent the position of each square (0 for the first square, 1 for the second, and so on.). The number of grains is the 64th Mersenne number.

  7. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Viète. de Moivre. Euler. Fourier. v. t. e. In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles.

  8. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    Geometric series. The geometric series 1/4 + 1/16 + 1/64 + 1/256 + ... shown as areas of purple squares. Each of the purple squares has 1/4 of the area of the next larger square (1/2× 1/2 = 1/4, 1/4×1/4 = 1/16, etc.). The sum of the areas of the purple squares is one third of the area of the large square. Another geometric series (coefficient ...

  9. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    In 2017, it was proven [15] that there exists a unique function F which is a solution of the equation F(z + 1) = exp(F(z)) and satisfies the additional conditions that F(0) = 1 and F(z) approaches the fixed points of the logarithm (roughly 0.318 ± 1.337i) as z approaches ±i∞ and that F is holomorphic in the whole complex z-plane, except the ...