Search results
Results from the WOW.Com Content Network
An unpaired electron has a magnetic dipole moment, while an electron pair has no dipole moment because the two electrons have opposite spins so their magnetic dipole fields are in opposite directions and cancel. Thus an atom with unpaired electrons acts as a magnetic dipole and interacts with a magnetic field. Only elements with unpaired ...
A high multiplicity state is therefore the same as a high-spin state. The lowest-energy state with maximum multiplicity usually has unpaired electrons all with parallel spin. Since the spin of each electron is 1/2, the total spin is one-half the number of unpaired electrons, and the multiplicity is the number of unpaired electrons + 1.
Octahedral high spin: 3 unpaired electrons, paramagnetic, substitutionally labile. Octahedral low spin: 1 unpaired electron, paramagnetic, substitutionally labile. Examples: cobaltocene. d 8 Complexes which are d 8 high-spin are usually octahedral (or tetrahedral) while low-spin d 8 complexes are
The highest occupied orbital energy level of dioxygen is a pair of antibonding π* orbitals. In the ground state of dioxygen, this energy level is occupied by two electrons of the same spin, as shown in the molecular orbital diagram. The molecule, therefore, has two unpaired electrons and is in a triplet state.
The filled MO highest in energy is called the highest occupied molecular orbital (HOMO) and the empty MO just above it is then the lowest unoccupied molecular orbital (LUMO). The electrons in the bonding MO's are called bonding electrons and any electrons in the antibonding orbital would be called antibonding electrons. The reduction in energy ...
For atoms with many electrons, this notation can become lengthy and so an abbreviated notation is used. The electron configuration can be visualized as the core electrons, equivalent to the noble gas of the preceding period, and the valence electrons: each element in a period differs only by the last few subshells. Phosphorus, for instance, is ...
In complexes of metals with these d-electron configurations, the non-bonding and anti-bonding molecular orbitals can be filled in two ways: one in which as many electrons as possible are put in the non-bonding orbitals before filling the anti-bonding orbitals, and one in which as many unpaired electrons as possible are put in. The former case ...
The occupation of the electron states in such an atom can be predicted by the Aufbau principle and Hund's empirical rules for the quantum numbers. The Aufbau principle fills orbitals based on their principal and azimuthal quantum numbers (lowest n + l first, with lowest n breaking ties; Hund's rule favors unpaired electrons in the outermost ...