Search results
Results from the WOW.Com Content Network
Photosynthesis and cellular respiration are distinct processes, as they take place through different sequences of chemical reactions and in different cellular compartments (cellular respiration in mitochondria). [15] [16] The general equation for photosynthesis as first proposed by Cornelis van Niel is: [17]
The photosynthetic efficiency (i.e. oxygenic photosynthesis efficiency) is the fraction of light energy converted into chemical energy during photosynthesis in green plants and algae. Photosynthesis can be described by the simplified chemical reaction 6 H 2 O + 6 CO 2 + energy → C 6 H 12 O 6 + 6 O 2
Light-dependent reactions of photosynthesis at the thylakoid membrane. Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).
The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle [1] of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into glucose. The Calvin cycle is present in all photosynthetic eukaryotes and also many ...
The Hill reaction is the light-driven transfer of electrons from water to Hill reagents (non-physiological oxidants) in a direction against the chemical potential gradient as part of photosynthesis. Robin Hill discovered the reaction in 1937.
Since photosynthesis is the single most effective natural regulator of carbon dioxide in the Earth's atmosphere, [49] a biochemical model of RuBisCO reaction is used as the core module of climate change models. Thus, a correct model of this reaction is essential to the basic understanding of the relations and interactions of environmental models.
The function of the reaction center of chlorophyll is to absorb light energy and transfer it to other parts of the photosystem. The absorbed energy of the photon is transferred to an electron in a process called charge separation. The removal of the electron from the chlorophyll is an oxidation reaction.
The reaction is part of the light-dependent reactions of photosynthesis in cyanobacteria and the chloroplasts of green algae and plants. It utilizes the energy of light to split a water molecule into its protons and electrons for photosynthesis. Free oxygen, generated as a by-product of this reaction, is released into the atmosphere. [2] [3]