Search results
Results from the WOW.Com Content Network
In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two numbers that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted F n .
Book IX, Proposition 36 of Elements proves that if the sum of the first n terms of this progression is a prime number (and thus is a Mersenne prime as mentioned above), then this sum times the n th term is a perfect number. For example, the sum of the first 5 terms of the series 1 + 2 + 4 + 8 + 16 = 31, which is a prime number.
The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...
the exponents of y in the terms are 0, 1, 2, ..., n − 1, n (the first term implicitly contains y 0 = 1); the coefficients form the n th row of Pascal's triangle; before combining like terms, there are 2 n terms x i y j in the expansion (not shown); after combining like terms, there are n + 1 terms, and their coefficients sum to 2 n.
3 + 2 = 5 with apples, a popular choice in textbooks [1] Addition (usually signified by the plus symbol +) is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. [2] The addition of two whole numbers results in the total amount or sum of those values combined. The example in the ...
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
The product of the members of a finite arithmetic progression with an initial element a 1, common differences d, and n elements in total is determined in a closed expression a 1 a 2 a 3 ⋯ a n = a 1 ( a 1 + d ) ( a 1 + 2 d ) . . .
There are many other combinatorial interpretations of binomial coefficients (counting problems for which the answer is given by a binomial coefficient expression), for instance the number of words formed of n bits (digits 0 or 1) whose sum is k is given by (), while the number of ways to write = + + + where every a i is a nonnegative integer is ...