Ads
related to: how to solve central angle problems
Search results
Results from the WOW.Com Content Network
In the classical central-force problem of classical mechanics, some potential energy functions () produce motions or orbits that can be expressed in terms of well-known functions, such as the trigonometric functions and elliptic functions. This article describes these functions and the corresponding solutions for the orbits.
The essence of the central-force problem is to solve for the position r [note 1] of a particle moving under the influence of a central force F, either as a function of time t or as a function of the angle φ relative to the center of force and an arbitrary axis.
The lengths of the sides a, b, c of a spherical triangle are their central angles, measured in angular units rather than linear units. (On a unit sphere, the angle (in radians) and length around the sphere are numerically the same. On other spheres, the angle (in radians) is equal to the length around the sphere divided by the radius.)
Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]
The traditional Kepler problem of calculating the orbit of an inverse square law may be read off from the Binet equation as the solution to the differential equation = (+) + = > If the angle θ {\displaystyle \theta } is measured from the periapsis , then the general solution for the orbit expressed in (reciprocal) polar coordinates is l u = 1 ...
adventitious quadrangles problem. A quadrilateral such as BCEF is called an adventitious quadrangle when the angles between its diagonals and sides are all rational angles, angles that give rational numbers when measured in degrees or other units for which the whole circle is a rational number. Numerous adventitious quadrangles beyond the one ...
The problem of two fixed centers conserves energy; in other words, the total energy is a constant of motion.The potential energy is given by =where represents the particle's position, and and are the distances between the particle and the centers of force; and are constants that measure the strength of the first and second forces, respectively.
Solving for is more or less equivalent to solving for the true anomaly, or the difference between the true anomaly and the mean anomaly, which is called the "Equation of the center". One can write an infinite series expression for the solution to Kepler's equation using Lagrange inversion , but the series does not converge for all combinations ...
Ads
related to: how to solve central angle problems