Search results
Results from the WOW.Com Content Network
Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an atomic number that is reduced by two.
The smallest nuclei that have to date been found to be capable of alpha emission are beryllium-8 and tellurium-104, not counting beta-delayed alpha emission of some lighter elements. The alpha decay sometimes leaves the parent nucleus in an excited state; the emission of a gamma ray then removes the excess energy.
The K-alpha 1 emission is slightly higher in energy (and, thus, has a lower wavelength) than the K-alpha 2 emission. For all elements, the ratio of the intensities of K-alpha 1 and K-alpha 2 is very close to 2:1. [7] An example of K-alpha lines is Fe K-alpha emitted as iron atoms are spiraling into a black hole at the center of a galaxy. [8]
Beta radiation from linac accelerators is far more energetic and penetrating than natural beta radiation. It is sometimes used therapeutically in radiotherapy to treat superficial tumors. Beta-plus (β +) radiation is the emission of positrons, which are the antimatter form of electrons. When a positron slows to speeds similar to those of ...
A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β − decay and β + decay, which produce electrons and positrons, respectively.
The two types of beta decay are known as beta minus and beta plus.In beta minus (β −) decay, a neutron is converted to a proton, and the process creates an electron and an electron antineutrino; while in beta plus (β +) decay, a proton is converted to a neutron and the process creates a positron and an electron neutrino. β + decay is also known as positron emission.
Although alpha, beta, and gamma radiations were most commonly found, other types of emission were eventually discovered. Shortly after the discovery of the positron in cosmic ray products, it was realized that the same process that operates in classical beta decay can also produce positrons ( positron emission ), along with neutrinos (classical ...
The four most common modes of radioactive decay are: alpha decay, beta decay, inverse beta decay (considered as both positron emission and electron capture), and isomeric transition. Of these decay processes, only alpha decay (fission of a helium-4 nucleus) changes the atomic mass number ( A ) of the nucleus, and always decreases it by four.