Search results
Results from the WOW.Com Content Network
An isothermal process is a type of thermodynamic process in which the temperature T of a system remains constant: ΔT = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange (see quasi-equilibrium).
The entropy of a given mass does not change during a process that is internally reversible and adiabatic. A process during which the entropy remains constant is called an isentropic process, written Δ s = 0 {\displaystyle \Delta s=0} or s 1 = s 2 {\displaystyle s_{1}=s_{2}} . [ 12 ]
For the expansion (or compression) of an ideal gas from an initial volume and pressure to a final volume and pressure at any constant temperature, the change in entropy is given by: = = Here is the amount of gas (in moles) and is the ideal gas constant.
The exponent, , with which the expansion of the gas can be calculated by the application of heat is called the isentropic – or adiabatic coefficient. Its value is determined by the Rüchardt experiment. An adiabatic and reversible running state change is isentropic (entropy S remains the same as temperature T changes). The technique is ...
The Joule expansion (a subset of free expansion) is an irreversible process in thermodynamics in which a volume of gas is kept in one side of a thermally isolated container (via a small partition), with the other side of the container being evacuated. The partition between the two parts of the container is then opened, and the gas fills the ...
Substituting from the ideal gas equation gives finally: = where n = number of moles of gas in the thermodynamic system under consideration and R = universal gas constant. On a per mole basis, the expression for difference in molar heat capacities becomes simply R for ideal gases as follows:
The gas continues to expand, doing work on the surroundings, and losing an equivalent amount of internal energy. The gas expansion causes it to cool to the "cold" temperature, T C. The entropy remains unchanged. Reversible isothermal compression of the gas at the "cold" temperature, T C (isothermal heat rejection) (C to D).
Since the total change in entropy must always be larger or equal to zero, we obtain the inequality W ≤ − Δ F . {\displaystyle W\leq -\Delta F.} We see that the total amount of work that can be extracted in an isothermal process is limited by the free-energy decrease, and that increasing the free energy in a reversible process requires work ...