enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isothermal process - Wikipedia

    en.wikipedia.org/wiki/Isothermal_process

    To maintain the constant temperature energy must leave the system as heat and enter the environment. If the gas is ideal, the amount of energy entering the environment is equal to the work done on the gas, because internal energy does not change. For isothermal expansion, the energy supplied to the system does work on the surroundings.

  3. Internal energy - Wikipedia

    en.wikipedia.org/wiki/Internal_energy

    The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization.

  4. Helmholtz free energy - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_free_energy

    The first law of thermodynamics in a closed system provides = +, where is the internal energy, is the energy added as heat, and is the work done on the system. The second law of thermodynamics for a reversible process yields δ Q = T d S {\displaystyle \delta Q=T\,\mathrm {d} S} .

  5. Joule expansion - Wikipedia

    en.wikipedia.org/wiki/Joule_expansion

    Since the internal energy of the gas during Joule expansion is constant, cooling must be due to the conversion of internal kinetic energy to internal potential energy, with the opposite being the case for warming. Intermolecular forces are repulsive at short range and attractive at long range (for example, see the Lennard-Jones potential ...

  6. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    The Carnot cycle is a cycle composed of the totally reversible processes of isentropic compression and expansion and isothermal heat addition and rejection. The thermal efficiency of a Carnot cycle depends only on the absolute temperatures of the two reservoirs in which heat transfer takes place, and for a power cycle is:

  7. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Free expansion = Work done by an expanding gas ... Isothermal ΔT = 0 Adiabatic = ... Internal Energy

  8. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    The maximum work is thus regarded as the diminution of the free, or available, energy of the system (Gibbs free energy G at T = constant, P = constant or Helmholtz free energy F at T = constant, V = constant), whilst the heat given out is usually a measure of the diminution of the total energy of the system (internal energy).

  9. Carnot cycle - Wikipedia

    en.wikipedia.org/wiki/Carnot_cycle

    A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynamic engine during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference through ...