enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    The psychologist Adolf Zeising noted that the golden ratio appeared in phyllotaxis and argued from these patterns in nature that the golden ratio was a universal law. [92] Zeising wrote in 1854 of a universal orthogenetic law of "striving for beauty and completeness in the realms of both nature and art". [93]

  3. Patterns in nature - Wikipedia

    en.wikipedia.org/wiki/Patterns_in_nature

    In disc phyllotaxis as in the sunflower and daisy, the florets are arranged along Fermat's spiral, but this is disguised because successive florets are spaced far apart, by the golden angle, 137.508° (dividing the circle in the golden ratio); when the flowerhead is mature so all the elements are the same size, this spacing creates a Fibonacci ...

  4. List of works designed with the golden ratio - Wikipedia

    en.wikipedia.org/wiki/List_of_works_designed...

    Other scholars question whether the golden ratio was known to or used by Greek artists and architects as a principle of aesthetic proportion. [11] Building the Acropolis is calculated to have been started around 600 BC, but the works said to exhibit the golden ratio proportions were created from 468 BC to 430 BC.

  5. Golden angle - Wikipedia

    en.wikipedia.org/wiki/Golden_angle

    The golden angle is the angle subtended by the smaller (red) arc when two arcs that make up a circle are in the golden ratio. In geometry, the golden angle is the smaller of the two angles created by sectioning the circumference of a circle according to the golden ratio; that is, into two arcs such that the ratio of the length of the smaller arc to the length of the larger arc is the same as ...

  6. Golden spiral - Wikipedia

    en.wikipedia.org/wiki/Golden_spiral

    Golden spirals are self-similar. The shape is infinitely repeated when magnified. In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. [1] That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes.

  7. The Greek Golden Ratio Phi (1.618) is a formula representing aesthetic harmony that has guided proportions in art and architecture for centuries, including in works by Leonardo Da Vinci. Dr.

  8. Logarithmic spiral - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_spiral

    The golden spiral is a logarithmic spiral that grows outward by a factor of the golden ratio for every 90 degrees of rotation (pitch angle about 17.03239 degrees). It can be approximated by a "Fibonacci spiral", made of a sequence of quarter circles with radii proportional to Fibonacci numbers .

  9. Mario Livio - Wikipedia

    en.wikipedia.org/wiki/Mario_Livio

    Livio's next book, The Golden Ratio: The Story of Phi (2002), concerned patterns in nature and art. He traced the influence of the golden ratio through many centuries of art, architecture, music, and even stock market theories. [11]