enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    Finding the real roots of a polynomial with real coefficients is a problem that has received much attention since the beginning of 19th century, and is still an active domain of research. Most root-finding algorithms can find some real roots, but cannot certify having found all the roots.

  3. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    However, in the case of polynomials there are other methods such as Descartes' rule of signs, Budan's theorem and Sturm's theorem for bounding or determining the number of roots in an interval. They lead to efficient algorithms for real-root isolation of polynomials, which find all real roots with a guaranteed accuracy.

  4. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    For polynomials with real coefficients, it is often useful to bound only the real roots. It suffices to bound the positive roots, as the negative roots of p(x) are the positive roots of p(–x). Clearly, every bound of all roots applies also for real roots. But in some contexts, tighter bounds of real roots are useful.

  5. Real-root isolation - Wikipedia

    en.wikipedia.org/wiki/Real-root_isolation

    The first complete root-isolation procedure results of Sturm's theorem (1829), which expresses the number of real roots in an interval in terms of the number of sign variations of the values of a sequence of polynomials, called Sturm's sequence, at the ends of the interval.

  6. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    The number of positive real roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting zero coefficients), and the difference between the root count and the sign change count is always even. In particular, when the number of sign changes is zero or one, then there are exactly zero or one positive roots.

  7. Lill's method - Wikipedia

    en.wikipedia.org/wiki/Lill's_method

    Finding roots −1/2, −1/ √ 2, and 1/ √ 2 of the cubic 4x 3 +2x 2 −2x−1 showing how negative coefficients and extended segments are handled. Each number shown on a colored line is the negative of its slope and hence a real root of the polynomial. To employ the method, a diagram is drawn starting at the origin.

  8. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    The theorem is used to find all rational roots of a polynomial, if any. It gives a finite number of possible fractions which can be checked to see if they are roots. If a rational root x = r is found, a linear polynomial (x – r) can be factored out of the polynomial using polynomial long division, resulting in a polynomial of lower degree ...

  9. Sturm's theorem - Wikipedia

    en.wikipedia.org/wiki/Sturm's_theorem

    Sturm's theorem expresses the number of distinct real roots of p located in an interval in terms of the number of changes of signs of the values of the Sturm sequence at the bounds of the interval. Applied to the interval of all the real numbers, it gives the total number of real roots of p. [1]