Search results
Results from the WOW.Com Content Network
Modern computer memory is implemented as semiconductor memory, [5] [6] where data is stored within memory cells built from MOS transistors and other components on an integrated circuit. [7] There are two main kinds of semiconductor memory: volatile and non-volatile. Examples of non-volatile memory are flash memory and ROM, PROM, EPROM, and ...
Additionally, a memory management unit (MMU) is a small device between CPU and RAM recalculating the actual memory address, for example to provide an abstraction of virtual memory or other tasks. As the RAM types used for primary storage are volatile (uninitialized at start up), a computer containing only such storage would not have a source to ...
The number of levels in the memory hierarchy and the performance at each level has increased over time. The type of memory or storage components also change historically. [6] For example, the memory hierarchy of an Intel Haswell Mobile [7] processor circa 2013 is: Processor registers – the fastest possible access (usually 1 CPU cycle). A few ...
Volatile memory, in contrast to non-volatile memory, is computer memory that requires power to maintain the stored information; it retains its contents while powered on but when the power is interrupted, the stored data is quickly lost. Volatile memory has several uses including as primary storage.
The memory cell is the fundamental building block of computer memory. The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 (high voltage level) and reset to store a logic 0 (low voltage level). Its value is maintained/stored until it is changed by the set/reset process.
The memory cell is the fundamental building block of computer memory. The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 (high voltage level) and reset to store a logic 0 (low voltage level). Its value is maintained/stored until it is changed by the set/reset process.
Memory architecture describes the methods used to implement electronic computer data storage in a manner that is a combination of the fastest, most reliable, most durable, and least expensive way to store and retrieve information. Depending on the specific application, a compromise of one of these requirements may be necessary in order to ...
Other examples of non-volatile memory include read-only memory (ROM), EPROM (erasable programmable ROM) and EEPROM (electrically erasable programmable ROM), ferroelectric RAM, most types of computer data storage devices (e.g. disk storage, hard disk drives, optical discs, floppy disks, and magnetic tape), and early computer storage methods such ...