enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Casting out nines - Wikipedia

    en.wikipedia.org/wiki/Casting_out_nines

    Now consider (7 + 9) × 5 = 16 × 5 = 80, (8 + 0 = 8) or 7 × (9 + 5) = 7 × 14 = 98, (9 + 8 = 17), (1 + 7 = 8). Any non-negative integer can be written as 9×n + a, where 'a' is a single digit from 0 to 8, and 'n' is some non-negative integer. Thus, using the distributive rule, (9×n + a)×(9×m + b)= 9×9×n×m + 9(am + bn) + ab.

  3. Four fours - Wikipedia

    en.wikipedia.org/wiki/Four_fours

    For example, when d=4, the hash table for two occurrences of d would contain the key-value pair 8 and 4+4, and the one for three occurrences, the key-value pair 2 and (4+4)/4 (strings shown in bold). The task is then reduced to recursively computing these hash tables for increasing n , starting from n=1 and continuing up to e.g. n=4.

  4. Elementary arithmetic - Wikipedia

    en.wikipedia.org/wiki/Elementary_arithmetic

    Dividing 272 and 8, starting with the hundreds digit, 2 is not divisible by 8. Add 20 and 7 to get 27. The largest number that the divisor of 8 can be multiplied by without exceeding 27 is 3, so it is written under the tens column.

  5. Division (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Division_(mathematics)

    In terms of partition, 20 / 5 means the size of each of 5 parts into which a set of size 20 is divided. For example, 20 apples divide into five groups of four apples, meaning that "twenty divided by five is equal to four". This is denoted as 20 / 5 = 4, or ⁠ 20 / 5 ⁠ = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is ...

  6. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    Two to the power of n, written as 2 n, is the number of values in which the bits in a binary word of length n can be set, where each bit is either of two values. A word, interpreted as representing an integer in a range starting at zero, referred to as an "unsigned integer", can represent values from 0 (000...000 2) to 2 n − 1 (111...111 2) inclusively.

  7. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    Using the example above: 16,499,205,854,376 has four of the digits 1, 4 and 7 and four of the digits 2, 5 and 8; since 44 = 0 is a multiple of 3, the number 16,499,205,854,376 is divisible by 3. Subtracting 2 times the last digit from the rest gives a multiple of 3. (Works because 21 is divisible by 3)

  8. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So: n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube.

  9. Long division - Wikipedia

    en.wikipedia.org/wiki/Long_division

    This 2 is then multiplied by the divisor 4 to get 8, which is the largest multiple of 4 that does not exceed 10; so 8 is written below 10, and the subtraction 10 minus 8 is performed to get the remainder 2, which is placed below the 8.