Search results
Results from the WOW.Com Content Network
Raoult's law (/ ˈ r ɑː uː l z / law) is a relation of physical chemistry, with implications in thermodynamics.Proposed by French chemist François-Marie Raoult in 1887, [1] [2] it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture.
Raoult's law is applicable only to non-electrolytes (uncharged species); it is most appropriate for non-polar molecules with only weak intermolecular attractions (such as London forces). Systems that have vapor pressures higher than indicated by the above formula are said to have positive deviations.
Workers spreading salt from a salt truck for deicing the road Freezing point depression is responsible for keeping ice cream soft below 0°C. [1]Freezing-point depression is a drop in the maximum temperature at which a substance freezes, caused when a smaller amount of another, non-volatile substance is added.
This means that, at least at low concentrations, the vapor pressure of the solvent will be greater than that predicted by Raoult's law. For instance, for solutions of magnesium chloride , the vapor pressure is slightly greater than that predicted by Raoult's law up to a concentration of 0.7 mol/kg, after which the vapor pressure is lower than ...
The temperature throughout the plot is assumed to be constant. The center trace is a straight line, which is what Raoult's law predicts for an ideal mixture. In general solely mixtures of chemically similar solvents, such as n-hexane with n-heptane, form nearly ideal mixtures that come close to obeying Raoult's law. The top trace illustrates a ...
The vapor pressure affects the solute shown by Raoult's Law while the free energy change and chemical potential are shown by Gibbs free energy. Most solutes remain in the liquid phase and do not enter the gas phase, except at very high temperatures. In terms of vapor pressure, a liquid boils when its vapor pressure equals the surrounding pressure.
Today's NYT Connections puzzle for Wednesday, January 15, 2025The New York Times
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...