Search results
Results from the WOW.Com Content Network
Ruze's equation is an equation relating the gain of an antenna to the root mean square (RMS) of the antenna's random surface errors. The equation was originally developed for parabolic reflector antennas, and later extended to phased arrays. The equation is named after John Ruze, who introduced the equation in a paper he wrote in 1952. [1]
Recognized effects of higher acute radiation doses are described in more detail in the article on radiation poisoning.Although the International System of Units (SI) defines the sievert (Sv) as the unit of radiation dose equivalent, chronic radiation levels and standards are still often given in units of millirems (mrem), where 1 mrem equals 1/1,000 of a rem and 1 rem equals 0.01 Sv.
Peak values can be calculated from RMS values from the above formula, which implies V P = V RMS × √ 2, assuming the source is a pure sine wave. Thus the peak value of the mains voltage in the USA is about 120 × √ 2, or about 170 volts. The peak-to-peak voltage, being double this, is about 340 volts.
Any real number can be written in the form m × 10 ^ n in many ways: for example, 350 can be written as 3.5 × 10 2 or 35 × 10 1 or 350 × 10 0. In normalized scientific notation (called "standard form" in the United Kingdom), the exponent n is chosen so that the absolute value of m remains at least one but less than ten (1 ≤ | m | < 10).
In probability and statistics, the 97.5th percentile point of the standard normal distribution is a number commonly used for statistical calculations. The approximate value of this number is 1.96 , meaning that 95% of the area under a normal curve lies within approximately 1.96 standard deviations of the mean .
To gain some basic intuition for this equation, we consider a propagating (cosine) wave A cos(kx − ωt). We want to see how fast a particular phase of the wave travels. For example, we can choose kx - ωt = 0, the phase of the first crest. This implies kx = ωt, and so v = x / t = ω / k.
The Antoine equation [3] [4] is a pragmatic mathematical expression of the relation between the vapor pressure and the temperature of pure liquid or solid substances. It is obtained by curve-fitting and is adapted to the fact that vapor pressure is usually increasing and concave as a function of temperature. The basic form of the equation is:
The value was chosen on the basis of the historical definition of the mole as the amount of substance that corresponds to the number of atoms in 12 grams of 12 C, [1] which made the mass of a mole of a compound expressed in grams, numerically equal to the average molecular mass or formula mass of the compound expressed in daltons.