Search results
Results from the WOW.Com Content Network
This means that the computation of greatest common divisor has, up to a constant factor, the same complexity as the multiplication. However, if a fast multiplication algorithm is used, one may modify the Euclidean algorithm for improving the complexity, but the computation of a greatest common divisor becomes slower than the multiplication.
The natural numbers m and n must be coprime, since any common factor could be factored out of m and n to make g greater. Thus, any other number c that divides both a and b must also divide g. The greatest common divisor g of a and b is the unique (positive) common divisor of a and b that is divisible by any other common divisor c. [6]
In elementary algebra, factoring a polynomial reduces the problem of finding its roots to finding the roots of the factors. Polynomials with coefficients in the integers or in a field possess the unique factorization property , a version of the fundamental theorem of arithmetic with prime numbers replaced by irreducible polynomials .
A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.
If two or more factors of a polynomial are identical, then the polynomial is a multiple of the square of this factor. The multiple factor is also a factor of the polynomial's derivative (with respect to any of the variables, if several). For univariate polynomials, multiple factors are equivalent to multiple roots (over a suitable extension field).
Well, my last rookie report was on November 7, seven games into the season, when McCain was averaging 6.7 points, 2.0 rebounds, 1.3 assists and 0.4 3s with 46/25/100 shooting splits in just 11 ...
In algebra, Gauss's lemma, [1] named after Carl Friedrich Gauss, is a theorem [note 1] about polynomials over the integers, or, more generally, over a unique factorization domain (that is, a ring that has a unique factorization property similar to the fundamental theorem of arithmetic).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!