enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    A function is called locally Lipschitz continuous if for every x in X there exists a neighborhood U of x such that f restricted to U is Lipschitz continuous. Equivalently, if X is a locally compact metric space, then f is locally Lipschitz if and only if it is Lipschitz continuous on every compact subset of X .

  3. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    That is, a function is Lipschitz continuous if there is a constant K such that the inequality ((), ()) (,) holds for any ,. [15] The Lipschitz condition occurs, for example, in the Picard–Lindelöf theorem concerning the solutions of ordinary differential equations.

  4. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.

  5. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.

  6. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).

  7. Hölder condition - Wikipedia

    en.wikipedia.org/wiki/Hölder_condition

    There are examples of uniformly continuous functions that are not α –Hölder continuous for any α. For instance, the function defined on [0, 1/2] by f(0) = 0 and by f(x) = 1/log(x) otherwise is continuous, and therefore uniformly continuous by the Heine-Cantor theorem. It does not satisfy a Hölder condition of any order, however.

  8. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    Linear functions + are the simplest examples of uniformly continuous functions. Any continuous function on the interval [ 0 , 1 ] {\displaystyle [0,1]} is also uniformly continuous, since [ 0 , 1 ] {\displaystyle [0,1]} is a compact set.

  9. Scott continuity - Wikipedia

    en.wikipedia.org/wiki/Scott_continuity

    A Scott-continuous function is always monotonic, meaning that if for ,, then () (). A subset of a directed complete partial order is closed with respect to the Scott topology induced by the partial order if and only if it is a lower set and closed under suprema of directed subsets.